Extensions 1→N→G→Q→1 with N=C2×C46 and Q=C22

Direct product G=N×Q with N=C2×C46 and Q=C22
dρLabelID
C23×C46368C2^3xC46368,42

Semidirect products G=N:Q with N=C2×C46 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C46)⋊C22 = D4×D23φ: C22/C1C22 ⊆ Aut C2×C46924+(C2xC46):C2^2368,31
(C2×C46)⋊2C22 = D4×C46φ: C22/C2C2 ⊆ Aut C2×C46184(C2xC46):2C2^2368,38
(C2×C46)⋊3C22 = C2×C23⋊D4φ: C22/C2C2 ⊆ Aut C2×C46184(C2xC46):3C2^2368,36
(C2×C46)⋊4C22 = C23×D23φ: C22/C2C2 ⊆ Aut C2×C46184(C2xC46):4C2^2368,41

Non-split extensions G=N.Q with N=C2×C46 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C46).C22 = D42D23φ: C22/C1C22 ⊆ Aut C2×C461844-(C2xC46).C2^2368,32
(C2×C46).2C22 = C4○D4×C23φ: C22/C2C2 ⊆ Aut C2×C461842(C2xC46).2C2^2368,40
(C2×C46).3C22 = C4×Dic23φ: C22/C2C2 ⊆ Aut C2×C46368(C2xC46).3C2^2368,10
(C2×C46).4C22 = Dic23⋊C4φ: C22/C2C2 ⊆ Aut C2×C46368(C2xC46).4C2^2368,11
(C2×C46).5C22 = C92⋊C4φ: C22/C2C2 ⊆ Aut C2×C46368(C2xC46).5C2^2368,12
(C2×C46).6C22 = D46⋊C4φ: C22/C2C2 ⊆ Aut C2×C46184(C2xC46).6C2^2368,13
(C2×C46).7C22 = C23.D23φ: C22/C2C2 ⊆ Aut C2×C46184(C2xC46).7C2^2368,18
(C2×C46).8C22 = C2×Dic46φ: C22/C2C2 ⊆ Aut C2×C46368(C2xC46).8C2^2368,27
(C2×C46).9C22 = C2×C4×D23φ: C22/C2C2 ⊆ Aut C2×C46184(C2xC46).9C2^2368,28
(C2×C46).10C22 = C2×D92φ: C22/C2C2 ⊆ Aut C2×C46184(C2xC46).10C2^2368,29
(C2×C46).11C22 = D925C2φ: C22/C2C2 ⊆ Aut C2×C461842(C2xC46).11C2^2368,30
(C2×C46).12C22 = C22×Dic23φ: C22/C2C2 ⊆ Aut C2×C46368(C2xC46).12C2^2368,35
(C2×C46).13C22 = C22⋊C4×C23central extension (φ=1)184(C2xC46).13C2^2368,20
(C2×C46).14C22 = C4⋊C4×C23central extension (φ=1)368(C2xC46).14C2^2368,21
(C2×C46).15C22 = Q8×C46central extension (φ=1)368(C2xC46).15C2^2368,39

׿
×
𝔽